Mit der wohl aufwendigsten und mit viel Geschick verbundenen, individuellen Spachtelmethode auf Gipsbasis, wie sie schon vor Jahrzehnten von Bernhard Stein postuliert wurde, kommt sicher nicht jedermann zurecht. Leichter fallen Modellbahnnern sicherlich Fels-Baumethoden, bei denen man sich Gipsabdrücke aus vorgefertigten Silikonformen (z. B. von Woodland Scenics) bedient oder gar fertige Felsteile aus Kunststoff oder festem Schaummaterial verwendet. Alle Bauarten erfordern ein mehr oder weniger geschicktes Verbinden der Bauteile und in aller Regel eine weitgehend aufwendige Bemalung. Neben dem Verständnis für die Vorbildmaterie (siehe em 1/08) und der damit verbundenen Bastelarbeit weisen dergestalt errichtete Felsformationen zudem durch die Bank ein nicht unerhebliches Gewicht auf, und das ist - in des Wortes wahrster Bedeutung - nicht immer tragbar.

Alternative zu Gips \& Co

Das Modellbau-Atelier Andreas Dietrich aus Österreich bietet als Alternative mit seinen so genannten Knitterfelsen eine im Ergebnis deutlich leichtere Variante an, denn die hier produzierten Felsvorlagen bestehen lediglich aus bedrucktem Papier. Konkret handelt es sich dabei um nach realen Vorlagen aus der Natur fotorealistisch bedrucktes Vliesmaterial, wobei bislang lediglich Kalkgestein verschiedener Arten und Größe berücksichtigt wurde. Sollte das Kundeninteresse anziehen, baut Dietrich das Sortiment sukzessive aus.

Maßstäblich zu den Baugrößen von Z bis 1 passend sind die zweidimensionalen Vorlageblätter je nach zugedachter Nenngröße von $45,0 \mathrm{~cm} \times$ $22,5 \mathrm{~cm}$ bis maximal $210 \mathrm{~cm} \times 93 \mathrm{~cm}$ groß und dabei im UV- und wasserbeständigen Tintenstrahldruck erstellt. Die Dreidimensionalität erhält man durch einfaches Zusammenknüllen der jeweiligen Druckvorlage. Glauben Sie mir: Es erfordert schon ein wenig Überwindung, die sauber bedruckten Blätter zu zerknittern - doch die Optik gewinnt dadurch ungemein. Je nach gewünschter Formung sind Ein- oder kleine Ausschnitte im Folienmaterial erforderlich. Die nach dem Knittern noch sehr instabile Oberfläche lässt sich durch Überstreichen mit Weißleim oder Tapetenkleister - wie in der Gebrauchsanleitung beschrieben - nur in Grenzen verfestigen.

Felskuppe am Wegesrand

Nach diesen allgemeinen Erörterungen zum Knit-terfelsen-Angebot sei am Beispiel beschrieben, wie sich aus einem flachen Papierbogen tatsächlich ein scheinbar weitgehend zerklüftetes Felsgebilde erstellen lässt. Die Vorgehensweise soll an einem Diorama mit einer in ihren Ausmaßen überschau-

> Bei entsprechender Farbgebung fügt sich das kleine Felsmassiv nahezu nahtlos dem Hintergrund an. Kaum zu glauben, dass die Felsen lediglich aus bedrucktem Papier bestehen.

Felsgestaltung in Leichtbauweise mittels Knitterfelsen

2D-Druck mit

3D-Effekten

Zur Herstellung von Felspartien oder Gebirgszügen im Modell gibt es verschiedene Methoden: Baumrinde, Gips, Folien, Schaumblöcke. Eine neue Idee ist bedrucktes Fels-Papier.
baren Felskuppe demonstriert sein. Die Basis bildet die so genannte Kalksteinvariante 1 der Gesteinsnachbildungen von Andreas Dietrich im Maß von $45 \mathrm{~cm} \times 26 \mathrm{~cm}$, die zwar vom Hersteller eher für die kleineren Maßstäbe gedacht ist, aber durchaus auch fürs HO -Gelände gute Dienste leistet.

Nachdem man sich über die Anordnung des Felsteils Gedanken gemacht hat, steht zu Beginn der Arbeiten tatsächlich erst einmal ein möglichst kleinzelliges Zerknittern der Folie an, was in einem möglichst kräftig zusammengedrückten Papierball enden sollte. Zieht man anschließend das Vliespapier wieder auseinander, ist aus der zweidimensionalen Folie ein mehr oder weniger zerklüftetes Relief entstanden, aus dem sich durch weitere Formung die gewünschte Felskuppe modellieren lässt. Überlappende Papierteile sollte man bei der Gelegenheit heraustrennen. Die Schnittkanten werden anschließend miteinander verbunden.

Beim Aufbau des kleinen, im Halbrelief zu erstellenden Felsmassivs würde es theoretisch ausreichen, lediglich eine Rückwand aus Karton, zu er-
stellen, an der sich die Kuppenrückseite anheften ließe. Sodann wären noch die unteren Enden mit dem Boden des zu gestaltenden Schaustücks zu verkleben. Die Stabilität ergäbe sich nach Herstellerangaben durch Überstreichen der Papierblase mit transparent auftrocknendem Leim. Diese Vorgehensweise erschien mir hinsichtlich der zu erzielenden Stabilität für zu gewagt. Aus diesem Grund wurden aus Styropor mittels Heißdrahtsäge eine Rückwand und diverse Geländespanten geschnitten und letztere im 90°-Winkel zur Abschlussplatte und am Dioramenboden angeklebt.
Nach Austrocknen dieser Geländebasis wurde das Knitterfelsmassiv daran angepasst. Bei sich durch die Wölbungen entstehenden Papierüberlappungen wurden diese Zwickel herausgeschnitten und die Enden aneinandergeklebt. Nachdem die Oberflächen aller Styroporschmalseiten mit Weißleim eingestrichen waren, konnte die Felsschicht mit der Unterkonstruktion verklebt und mit Heftzwecken fixiert werden. Nachdem die Felsfolie an der Stützkonstruktion haftete, wurde sie mit Weißleim überstrichen. Als unerwünschten Neben-

A $>$ Drei unterschiedliche Dietrich-Felsdrucke im Vergleich: Variante 4 "Steilwand mit Wasser" (links) sowie die Kalkstein-Varianten 2 und 1

Die im Beitrag verarbeiteten Knitterfelsen - es gibt die Felsdrucke in den Farben Hell und Grau für die Nenngrößen Z bis 1 zu Preisen zwischen 7,50 € und 82 € je Druckbogen - sowie die im Dioramenhintergrund sichtbare Kulisse werden angeboten von:

Modellbau-Atelier
Andreas Dietrich
Stöcklgras 30
4910 Ried/Österreich
Telefon: 0043775286654
E-Mail: modellbau@atelier-dietrich.at Internet: www.atelier-dietrich.at
effekt bekam der Fels dadurch leider eine leicht glänzende Oberfläche. Abschließend wurden die Felsfolienränder und entstandene Überlappungen mit Sandspachtel ausgeglichen.

Finish wie bei jedem Fels

Die zusätzliche Farbgebung der Folie ist nicht unbedingt nötig und wohl auch Geschmackssache. Wer sich dennoch an das Abenteuer Bemalung wagt, kommt am einfachsten mit Kreiden oder Farbpigmenten zurecht, wobei Grau-, Braun-, Weiß- und sogar Grüntöne anwendbar wären.

Bei der Gelegenheit sollte man beispielsweise allzu schwarze Partien aufhellen. Das ist insbesondere dann wichtig, wenn sie in einer Knickzone liegen, die, bezogen auf die aufgedruckte Steinstruktur, dort eigentlich nicht hingehören.

Wichtig ist allerdings, die durch das Zerknittern neu entstandenen Grate abschließend durch ein Setzen von so genannten Lichtern optisch hervorzuheben. Man bewirkt dies mittels Graniertechnik: Dabei nimmt man von einer Palette oder einem flachen Brettchen mit einem Flachpinsel minimale Mengen weißer Farbe auf und bestreicht damit alle hervorstehenden Grate und Kanten. Natürlich

4 Wieder auseinandergefaltet, ergeben sich dreidimensionale Felsstrukturen.

Δ Mithilfe einer Heißdrahtsäge entstehen fürs Diorama eine Styroporrückwand und einige Spanten als stabiler Unterbau für die Knitterfelsen.

A Auf einer festen Kartonunterlage werden Rückwand und Spanten aufgeklebt. Das Felsmassiv aus Papier im Vordergrund liegt schon bereit.

$\Delta>$ Mit Sandspachtel werden die Ränder des Felsgebildes sowie Mulden, Scharten und kleine Unebenheiten ausgeglichen bzw. modelliert; Steine und Schotter sorgen für Felsbrocken- und Geröllnachbildungen am Fuße des Felsens.

A Nach dem Weißleimauftrag auf die Spanten wird das zerknüllte Felsvlies aufgeklebt. Mit der Schere werden Überlappungen ausgeschnitten.

\triangle Nach der Farbbehandlung mit unterschiedlichen Farbpulvern erhalten die Knitterkanten und Grate helle Hervorhebungen.
der kleinen Felsregion passend zu gestalten. Diese Aufgabe übernehmen ein Feldweg und eine vorgelagerte Weide. Als Hintergrundkulisse bietet sich ein alpenländisches Landschaftspanorama an, wodurch der dreidimensional gestaltete Fels erst einen Sinn erhält. Eine kleine Auswahl passender Hintergründe ist ebenfalls beim Atelier Dietrich vorhanden.

Mit der hier demonstrierten Knittermethode lassen sich auf relativ einfache Weise recht überzeugende Felsen gestalten. Der unbestrittene Vorteil dieser Arbeitsweise liegt im relativ geringen Arbeitsaufwand und in der Leichtgewichtigkeit der geschaffenen Felspartie, wenn man diese gegenüber der aufwendigen und schwergewichtigen Gipsnachbildung aufwiegt.
Die Unterschiede zwischen der zweidimensional gedruckten Felsstruktur und der sich durchs Zerknittern ergebenden dreidimensionalen Form tritt bei Anwendung im Mittel- und Hintergrund einer Anlage sicher nicht so zutage, im Vordergrund ist der 3D-Effekt aber wichtig. Durch Aufbringen von Leim wird die Eigenstabilität zwar gestärkt, doch eine Tragfähigkeit für weitere Gestaltungsmittel wie etwa Bäume wird dadurch nicht erreicht. Dann muss ein stützender Unterbau her. Im Fazit betrachtet, ist die Knitterfelsgestaltung eine super Idee mit toller Wirkung, allerdings nicht für jeden Einsatzzweck geeignet.

Bruno Kaiser

